Beginner’s Guide: Building a WeChat Mini Program with Cursor – From Zero to Functional App

The AI development revolution has democratized coding – even absolute beginners can now create functional apps. Inspired by Li Jigang’s viral “Book of Answers” and “Divination” prompts, I embarked on creating my first WeChat mini program. Here’s my battle-tested guide to transforming AI magic into a real-world application.

01 Tools of the Trade: Setting Up Your Arsenal

I. WeChat Mini Program Development Setup

  1. Install Official Dev Tools
    Download the WeChat Developer Tools from Official Portal. This all-in-one suite includes:
  • Real-time preview simulator
  • Debugging console with network monitoring
  • Automatic WXML/WXSS compilation

  1. Initialize Project Framework
    Create new project → Select “Empty Template” → Configure:
  • Project name: “AI Oracle” (or your custom name)
  • AppID: Obtain from WeChat Official Platform (requires verified account)
  • Enable ES6/ES7 transpilation


II. Cursor AI Development Configuration

  1. Install Cursor (The AI Pair Programmer)
    Get the latest version from cursor.com. Pro tip: Enable “Developer Mode” during installation for advanced features.

  1. Localization Setup
    Ctrl+Shift+P → “Configure Display Language” → Install Chinese Simplified package → Restart IDE

  1. Activate Composer (Secret Weapon)
    File → Preferences → Settings → Search “Composer” → Enable multi-file editing and batch generation

  1. Project Integration
    File → Open Folder → Select your WeChat project directory → Activate WXML/WXSS syntax highlighting


02 AI-Driven Development Workflow

Step 1: Requirements Specification

Create readme.md with:

1. Role: Senior WeChat Mini Program UI Engineer  
2. Task: Implement input-output interface for AI API integration  
3. Tech Stack:  
   - Frontend: WXML/WXSS/JavaScript  
   - Backend: SiliconFlow API (LLM integration)  
4. Requirements:  
   - Clean material design interface  
   - Input validation system  
   - Loading state management  
   - Error handling with user feedback  

Step 2: AI Code Generation

  1. Open readme.md
  2. Ctrl+I → Select Claude-3.5-Sonnet-20241022 (Best for Chinese context)
  3. Prompt: “Generate complete implementation per spec”

AI Output Analysis:

  • Automatically creates index.wxmlindex.wxssindex.jsindex.json
  • Implements basic API call structure
  • Sets up event listeners


Step 3: SiliconFlow API Integration

  1. Register at SiliconFlow Cloud
  2. Obtain API Key → Configure in config.js:
    module.exports = {  
    API_ENDPOINT: 'https://api.siliconflow.cn/v1/chat',  
    API_KEY: 'sk-your-key-here'  
    }  


Step 4: Iterative Refinement

Common Debugging Scenarios:

  • CORS Issues: Configure domain whitelist in WeChat backend
  • Layout Bugs: Use Chrome DevTools-like inspector in WeChat IDE
  • API Throttling: Implement exponential backoff retry logic



03 Final Implementation Showcase

Core Features Achieved:

  1. Clean Material Design UI
  2. Real-time AI Response Streaming
  3. Session History Preservation
  4. Error Boundary Handling





Pro Tips for Production Readiness

  1. Performance Optimization
  • Implement virtual scrolling for long responses
  • Add WebSocket support for faster updates
  • Use WXS for computationally heavy tasks
  1. Security Enhancements
  • Encrypt local storage using WeChat’s wx.setStorageSync
  • Implement JWT token rotation for API calls
  • Add rate limiting to prevent abuse
  1. App Store Compliance
  • Include privacy policy page
  • Implement content filtering system
  • Add user feedback/report mechanism

This journey proves that with modern AI tools like Cursor, even non-coders can ship functional apps in hours rather than months. The future of development isn’t just about writing code – it’s about effectively directing AI collaborators to materialize your vision.